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Problem Set 5

This problem set – the last one purely on discrete mathematics – is designed as a cumulative review
of the topics we’ve covered so far and a proving ground to try out your newfound skills with mathe-
matical induction. The problems here span all sorts of topics – parallel processing, the nature of in-
finity, tiling problems, and social networks – and we hope that it serves as a fitting coda to our whirl -
wind tour of discrete math!

We recommend that you  read Handout #28, “Guide to Induction,” before starting this problem
set. It contains a lot of useful advice about how to approach problems inductively, how to structure
inductive proofs, and how to not fall into common inductive traps. Additionally, before submitting,
be sure to  read over Handout #29, the “Induction Proofwriting Checklist,” for a list of specific
things to watch for in your solutions before submitting.

As a note on this problem set – normally, you're welcome to use any proof technique you'd like to
prove results in this course. On this problem set, we've specifically requested on some problems that
you prove a result inductively. For those problems, you should prove those results using induction or
complete induction, even if there is another way to prove the result. (If you'd like to use induction in
conjunction with other techniques like proof by contradiction or proof by contrapositive, that's per-
fectly fine.)

As always, please feel free to drop by ofce hours, visit Piazza, or send us emails if you have any
questions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, February 16th at 2:30PM.
There is no checkpoint problem.



2 / 10

Problem One: Chains and Antichains
Let A be an arbitrary set and <A be some strict order over A. A chain in <A is a series x₁, …, x  ₖ of ele-
ments drawn from A such that

x₁  <A  x₂  <A  …  <A  xₖ.

Intuitively, a chain is a series of values in ascending order according to the strict order <A. The length of a
chain is the number of elements in that chain.

i. Consider the ⊊ relation over the set ℘({a, b, c}), where A ⊊ B means that A ⊆ B but A ≠ B. What
is the length of the longest chain in this strict order? Give an example of a chain with that length.
No justification is necessary.

Draw the Hasse diagram and see if you can fnd a  isual intuition for the defnition of a chain.

Now, let's cover a new definition. An antichain in <A is a set X ⊆ A such any two elements in X are in-
comparable by the <A relation. In other words, a set X ⊆ A is an antichain if

∀a ∈ X. ∀b ∈ X. (a ≮A b   ∧   b ≮A a)

The size of an antichain X is the number of elements in X.

ii. Consider the ⊊ relation over the set ℘({a, b, c}). What is the size of the largest antichain in this
strict order? Give an example of an antichain with that size. No justification is necessary.

Draw the Hasse diagram and see if you can fnd a  isual intuition for the defnition of an antichain.

Given an arbitrary strictly ordered set, you can't say anything a priori about the size of the largest chain or
antichain in that strict order. However, you can say that at least one of them must be relatively large rela-
tive to the strictly ordered set.

Let <A be an arbitrary strict order over an arbitrary set A containing exactly n2+1 elements for some natu-
ral number n ≥ 1. We're going to ask you to prove the following result: either A contains a chain of length
n+1 or an antichain of size n+1 (or both). Following the advice from Handout 17, we’ll prove this by in-
stead proving that if A does not contain a chain of length n+1 or greater, then A must contain an antichain
of size n+1 or greater.

iii. For each element a ∈ A, we'll say that the height of a is the length of the longest chain whose final
element is a. Prove that if A does not contain a chain of length n+1 or greater, then there must be
at least n+1 elements of A at the same height.

Something to think about: what’s the smallest possible height of an element of A?

iv. Your result from part (iii) establishes that if A does not contain a chain of length n+1 or greater,
there must be a collection of n+1 elements of A at the same height as one another. Prove that if A
does not contain a chain of length  n+1 or greater, then it contains an antichain of size  n+1 or
greater.

Intuitively speaking, if <A is a strict order over A that represents some prerequisite structure on a group of
tasks, a chain represents a series of tasks that have to be performed one after the other, and an antichain
represents a group of tasks that can all be performed in parallel (do you see why?) In the context of paral -
lel computing, the result you've proved states that if a group of tasks doesn't contain long dependency
chains, that group must have a good degree of parallelism. Take CS149 for more information!
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Problem Two: Recurrence Relations
A recurrence relation is a recursive definition of the terms in a sequence. Typically, a recurrence relation
specifies the value of the first few terms in a sequence, then defines the remaining terms from the previous
terms. For example, the Fibonacci sequence can be defined by the following recurrence relation:

F0 = 0
F1 = 1

Fn+2 = Fn + Fn+1

The first terms of this sequence are F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, etc.

Some recurrence relations define well-known sequences. For example, consider the following recurrence
relation:

a0 = 1
an+1 = 2an

The first few terms of this sequence are 1, 2, 4, 8, 16, 32, …, which happen to be powers of two. It turns
out that this isn't a coincidence – this recurrence relation perfectly describes the powers of two.

i. Prove by induction that for any n ∈ ℕ, we have an = 2n.

In case you’re wondering what you’re asked to pro e here: the ofcial defnition a  is gi en by the recurₙ -
rence relation. If you e er need to determine what the  alue of a  is for some  alue of n, look back at thatₙ
defnition. We want you to pro e that, as a consequence of that defnition, the  alue of a , the nth term inₙ
the series, is always exactly 2n.

Minor changes to the recursive step in a recurrence relation can lead to enormous changes in what num-
bers are generated. Consider the following two recurrence relations, which are similar to the an sequence
defined above but with slight changes to the recursive step:

b0 = 1
bn+1 = 2bn – 1

c0 = 1
cn+1 = 2cn + 1

ii. Find non-recursive definitions for bn and cn, then prove by induction that your definitions are cor-
rect.

This one is hard to do just by eyeballing the recurrences. Try expanding out the frst few terms of these se-
quences and see what you fnd.

Finding non-recursive definitions for recurrences (often called “solving” the recurrence) is useful in the
design and analysis of algorithms. Commonly, when trying to analyze the runtime of an algorithm, you
will arrive at a recurrence relation describing the runtime on an input of size n in terms of the runtime on
inputs of smaller sizes. Solving the recurrence then lets you precisely determine the runtime. To learn
more, take CS161, Math 108, or consider reading through the excellent textbook Concrete Mathematics by
Graham, Knuth, and Patashnik.
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Problem Three: It’ll All Even Out
Our very first proof by induction was the proof that for any natural number n, we have that

20 + 21 + 22 + … + 2n-1 = 2n – 1.

This result is still true for the case where n = 0, since in that case the sum on the left-hand side of the
equation is the empty sum of zero numbers, which is by definition equal to zero. It’s also true for the case
where n = 1; in that case, the sum on the left-hand side of the equality just has a single term in it (2 0) and
the right-hand side has the same value.

Below is a proof by complete induction of an incorrect statement about what happens when you sum up
zero or more real numbers:

Theorem: The sum of any number of real numbers is even.

Proof: Let P(n) be the statement “the sum of any n real numbers is even.” We will prove by
complete induction that P(n) holds for all n ∈ ℕ, from which the theorem follows.

As a base case, we prove P(0), that the sum of any 0 real numbers is even. The sum of any
zero numbers is the empty sum and is by definition equal to 0, which is even. Thus P(0)
holds.

For our inductive step, assume for some arbitrary k ∈ ℕ that P(0), …, and P(k) are true. We
will prove that P(k+1) is true, meaning that the sum of any k+1 real numbers is even. To do
so, let x₁, x₂, …, xk, and xk+1 be arbitrary real numbers and consider the sum

x₁  +  x₂  +  …  +  xk  +  xk+1.

We can group the first k terms and the last term independently to see that

x₁  +  x₂  +  …  +  xk  +  xk+1  =  (x₁  +  x₂  +  …  +  xk)  +  (xk+1).

Now, consider the sum x₁  +  x₂  +  …  +  xk of the first k terms. This is the sum of k real
numbers, so by our inductive hypothesis that  P(k) is true we know that this sum must be
even. Similarly, consider the sum xk+1 consisting of just the single term xk+1. By our induc-
tive hypothesis that P(1) is true, we know that this sum must be even.

Overall, we have shown that x₁  +  x₂  +  …  +  xk  +  xk+1 can be written as the sum of two
even numbers (namely, x₁  +  x₂  +  …  +  xk and xk+1), so x₁  +  x₂  +  …  +  xk  +  xk+1 is
even. Thus P(k+1) is true, completing the induction. ■

Of course, this result has to be incorrect, since there are many sums of real numbers that don’t evaluate to
an even number. The sum 2 + 3 + 4, for example, works out to 9, and the sum π + 1 doesn’t even work
out to an integer!

What’s wrong with this proof? Be as specific as possible. For full credit, you should be able to identify a
specific claim made in the proof that is not correct, along with an explanation as to why it’s incorrect.

Think about our “induction as a machine” analogy from lecture that explains why you can start with a base
case and inducti e step and end up with a proof that works for all natural numbers. See what happens if
you try that out here.
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Problem Four: So What Exactly Is Multiplication, Anyway?
On Problem Set Four, you proved that 2ℵ₀ = ℵ₀ by finding a bijection between ℕ × {★, ☺} and ℕ. But
why exactly did finding that bijection tell you anything about 2ℵ₀?

Let’s suppose you have two cardinal numbers κ₁ and κ₂. (A cardinal number is a quantity that represents
the size of a set; all natural numbers are cardinal numbers, as is ℵ₀.) We can define κ₁ · κ₂ as follows: pick
any sets A and B where |A| = κ₁ and |B| = κ₂, then determine |A × B|. The resulting cardinal number is
then defined to be κ₁ · κ₂. In other words, 4 · 3 is defned to be |A × B| for any sets A and B where |A| = 4
and |B| = 3. Similarly, 2ℵ₀ is defned to be |A × B| for any sets A and B where |A| = 2 and |B| = ℵ₀.

For this definition to work, we have to make sure that the cardinality of the Cartesian product depends
purely on the cardinalities of the two sets, not their contents. For example, this definition wouldn't give us
a way to compute 4 · 3 if the cardinality of the Cartesian product of a set of four apples and three oranges
was diferent than the cardinality of the Cartesian product of a set of four figs and three dates. We need to
show that for any sets A, B, C, and D, that if |A| = |C| and |B| = |D|, then |A × B| = |C × D|. That way, when
determining κ₁ ·  κ₂, it  doesn't  matter which sets of cardinality κ₁ and κ₂ we pick. (Contrast thiswith
|A ∪ B|: if you have sets A and B, you can’t necessarily predict |A ∪ B| from |A| and |B|.)

Let A, B, C, and D be arbitrary sets where |A| = |C| and |B| = |D|. Our goal is to prove |A × B| = |C × D|.
Since we know |A| = |C|, there has to be some bijection g : A → C. Since we know |B| = |D|, there has to
be some bijection h : B → D. Now, consider the function f : A × B → C × D defined as follows:

f(a, b) = (g(a), h(b))

That is, the output of f when applied to the pair (a, b) is an ordered pair whose first element is g(a) and
whose second element is h(b).

i. Using the function f defined above, prove that |A × B| = |C × D|. Specifically, prove that f is a bi-
jection between A × B and C × D.

Two ordered pairs are equal if and only if their corresponding elements are equal. Although the preceding
discussion talked about how to multiply cardinal numbers, that discussion only works because of the result
that you’ll be pro ing here, so you can’t assume that |A × B| = |A| · |B| in the course of writing this proof.
Your proof should purely focus on pro ing that f is a bijection.

We can define the Cartesian power of a set as follows.  For any set A and any positive natural number n,
we define An inductively:

    A1 =  A

    An+1 =  A × An (for n ≥ 1)

Amazingly, we know that |ℕ| = |ℕ2|, meaning that there’s the same number of pairs of natural numbers as
there are natural numbers themselves. Feel free to use this fact in the following problem.

ii. Using your result from (i), the above definition, and the fact that |ℕ| = |ℕ2|, prove by induction that
|ℕk| = |ℕ| for all nonzero k ∈ ℕ. This result means that for any nonzero finite k, there are the same
number of k-tuples of natural numbers as natural numbers.

If κ is a cardinal number and n ≥ 1 is a natural number, then by defnition the value of κn is |An|, where A
is any set of cardinality κ. Your result from part (ii) shows that ℵ₀n = ℵ₀ for any positive natural number n.
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Problem Five: Induction and Recursion
There’s a close connection between mathematical induction and recursion, and many of the proofs by in-
duction that we did in class can be thought of as claims about how specific recursive functions work. 

One of the first proofs by induction that we did was to prove that, given a collection of 3 n coins containing
a single counterfeit coin that’s heavier than the rest, it is always possible to discover which coin is fake us -
ing exactly n weighings on a balance. The key idea behind the proof was, essentially, a recursive algorithm
that can be used to actually go and find which of the coins is counterfeit!

i. Implement a recursive function

Coin counterfeitIn(std::vector<Coin> coins, Balance balance);

that takes as input a set of exactly 3n coins for some natural number n, one of which is counterfeit
and weighs more than the rest, and returns which one that is. You’re provided a balance you can
use to weigh groups of coins and can make at most n weighings on that balance. Check the header
CounterfeitCoins.h for a description of the relevant types here.

Test your code locally on your machine before submitting it, since if your solution crashes due to a logic er-
ror the autograder won’t gi e you any useful feedback. Our pro ided starter fles pro ide an interface you
can use to test out your function on a number of diferent inputs and will show you which coins actually get
weighed against one another.

Your code from part (i) shows that the inducti e argument we made in class can be converted into a recur-
si e function that actually finds the coin!

Now, here’s a fun little variant on the counterfeit coin problem. Imagine that you’re given a collection of
coins. You’re told that there might be a counterfeit in it, but then again, there might not be. If there is a
counterfeit coin, it’s guaranteed to be heavier than the rest. Your job is to determine whether there even is
a counterfeit coin at all and, if so, to return which one it is.

ii. Implement a recursive function

Coin maybeCounterfeitIn(std::vector<Coin> coins, Balance balance) 

that takes as input a set of exactly 3n – 1 coins for some natural number n, which might contain a
counterfeit that weighs more than the rest. The function should either return the counterfeit coin if
one exists, or return the special constant None if none of the coins are counterfeit. You’re provided
a balance you can use to weigh groups of coins and can make at most n weighings on that balance.

Again, test locally, and test thoroughly – it’s easy to miss cases!

iii. Using the recursive intuition that you developed in the course of solving part (ii) of this problem,
prove that given any collection of exactly 3n – 1 coins, of which at most one is a counterfeit that
weighs more than the rest, it is always possible to identify which coin that is using at most  n
weighings on a balance (or to report that all coins are genuine). Your proof should have a similar
structure to the one about counterfeit coins from lecture. While you should should not explicitly
reference the code you wrote in part (ii) of this problem, you may want to use the same recursive
insight from that problem to guide the structure of your proof.

We hope that this exercise gives you a better sense for the interplay between theory (proof by induction)
and practice (recursive problem-solving). If you’re interested in this sort of thing, we strongly recommend
checking out CS161, where you’ll alternate between designing clever algorithms and using induction to
prove that they work correctly.
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Problem Six: Tiling with Triominoes
Recall from Problem Set One that a right triomino is an L-shaped tile that looks like this:

Suppose you’re given a 2n × 2n grid of squares and want to tile it with right triominoes by covering the
grid with triominoes such that all triominoes are completely on the grid and no triominoes overlap. Here's
an attempt to cover an 8 × 8 grid with triominoes, which doesn’t manage to cover all squares:

Amazingly, it turns out that it is always possible to tile any 2n × 2n grid that's missing exactly one square
with right triominoes. It doesn't matter what n is or which square is removed; there is always a solution to
the problem. For example, here are all the ways to tile a 4 × 4 grid that has a square missing:

This question explores why this is the case.

i. Prove, by induction, that 4n – 1 is a multiple of three for any n ∈ ℕ.

Any 2n × 2n grid missing a square has a number of squares has exactly 4n – 1 squares, and so its number
of squares is a multiple of three. Although you can show that a figure can’t be tiled with triominoes by
showing that its number of squares isn’t a multiple of three, you can’t show that a figure can be tiled with
triominoes purely by showing that its number of squares is a multiple of three. The arrangement matters.

ii. Draw a figure made of squares where the number of squares is a multiple of three, yet the figure
cannot be tiled with right triominoes. Briefy justify your answer; no formal proof is necessary.

iii. Prove by induction that for any natural number n, any 2n × 2n grid with any one square removed
can be tiled by right triominoes.

Before you write this proof, try seeing if you can fnd a nice recursi e pattern you can follow that will let
you fully tile any such board. Once you’ e found it, formalize your idea in your answer. You may want to
think about how to start with a larger board and subdi ide it into some number of smaller boards.
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Problem Seven: The Circle Game
Here's a game you can play. Suppose that you have a circle
with 2n arbitrarily-chosen points on its circumference.  n of
these points are labeled +1, and the remaining n are labeled
-1. One sample circle with eight points, of which four are la-
beled +1 and four are labeled -1, is shown to the right.

Here's the rules of the game. First,  choose one of the 2n
points as your starting point. Then, start moving clockwise
around the circle. As you go, you'll pass through some num-
ber of +1 points and some number of -1 points. You lose the
game if at any point on your journey you pass through more
-1 points than +1 points. You win the game if you get all the
way back around to your starting point without losing.

For example, if you started at point A, the game would go like this:

Start at A: +1.
Pass through B: +2.
Pass through C: +1.
Pass through D: 0.
Pass through E: -1. (You lose.)

If you started at point G, the game would go like this:

Start at G: -1 (You lose.)

However, if you started at point F, the game would go like this:

Start at F: +1.
Pass through G: 0.
Pass through H: +1.
Pass through A: +2.
Pass through B: +3.
Pass through C: +2.
Pass through D: +1.
Pass through E: +0.
Return to F. (You win!)

Interestingly, it turns out that no matter which n points are labeled +1 and which n points are labeled -1,
there is always at least one point you can start at to win the game.

Prove, by induction, that the above fact is true for any n ≥ 1.

This one is all  about fnding the right setup. Check the Guide to Induction and Inducti e Proofwriting
Checklist for details.
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Problem Eight: Nim
Nim is a family of games played by two players. The game begins with several piles of stones, each of
which has zero or more stones in it, that are shared between the two players. Players alternate taking turns
removing any nonzero number of stones from any single pile of their choice. If at the start of a player's
turn all the piles are empty, then that player loses the game.

Prove, by induction, that if the game is played with just two piles of stones, each of which begins with ex-
actly the same number of stones, then the second player can always win the game if she plays correctly.

Before trying to write up your answer to this question, we recommend playing this game with a partner until
you can fnd a winning strategy. Once you spot the pattern, see if you can fnd a way to formalize it using
induction. Be wary of writing statements of the form “and so on” or “by repeating this;” those aren’t rigor-
ous ways to formalize that a process will e entually do something.

Problem Nine: Independent Sets Revisited
Recall from Problem Set Four that an independent set in a graph G = (V, E) is a set I ⊆ V where no two
nodes in I are adjacent to one another. As you saw on that problem set, many problems in graph theory
boil down to finding large independent sets in a graph. The question then arises: how big of an indepen-
dent set can you reasonably expect to find?

i. Let G be a graph where each node has degree less than or equal to d. (As a reminder, the degree
of a node in a graph is the number of nodes that it’s adjacent to.) Prove, by complete induction on
n, that if G is a graph with n ≥ 0 nodes, then G has an independent set of size at least n

d+1 .

As with the Circle Game problem, one of the big steps in sol ing this one is making sure you’re setting up
this problem properly. Will you start with a smaller graph and add another node in, or start with a larger
graph and take a note out?

We strongly recommend checking your work by thinking about how you’d con ert your inducti e proof into
a recursi e algorithm, then testing that algorithm out on some sample graphs. If you’ e found the right ar -
gument, you should end up with a rather simple algorithm.

There’s also no guarantee that the graph G has a node of degree exactly d. The statement “e eryone in
CS103 has height less than or equal to 1km” is true, e en though no one is anywhere close to that tall.

Graphs are often used to model social networks: each person is a node, and friendships are represented by
edges. The sorts of graphs you find this way in the real world have all sorts of interesting properties (take
CS224W or CS267 for more details!) In particular, social networks tend to have a lot of triangles, collec-
tions of three nodes that are all mutually adjacent.

This question explores a class of graphs that are quite diferent from the graphs that typically arise in so-
cial networks: triangle-free graphs. A triangle-free graph is one that contains no triangles. That is, if you
pick three distinct nodes in the graph, some two of them will not be adjacent.

ii. Draw a triangle-free graph with nine nodes that has a node of degree eight. Justify your answer.

iii. Prove that if G is a triangle-free graph with n2 nodes, then G contains an independent set of size at
least n.

This last one is tricky, so don’t worry if you don’t see it immediately. Note that we didn’t say to use induc -
tion here. You may want to fnd a way to work in the result from part (i) of this problem. Work backwards:
what  alue of d would you need to ha e in order to apply that result? Don’t forget the result you found in
part (ii), though: triangle-free graphs can ha e  ery high-degree nodes. What happens then?
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Optional Fun Problem: Synchronicity (1 Point Extra Credit)
Let’s say that an era is a historical time period with a definitive start date and definitive end date. For ex-
ample, the Meiji Era ran from October 23, 1868 to July 30, 1912, and the Cuban Missile Crisis ran from
October 16, 1962 to October 28, 1962. For simplicity, we’ll assume that these time ranges include the en-
tirety of their start and end dates.

Prove that no matter how you choose any fifty eras from history, you can either (1) find a date that’s con-
tained in at least eight of those eras, or (2) find eight eras of which no two have any days in common.


